Warning: spot rates are calculated by employing Central Bank Treasuries only. So therefore, the first spot rate is the Internal Rate Of Return of such a theoretical zero coupon treasury, the following spot rates -on the yield curve- undergo a bootstrapping process. Precaución: las tasas de interés al contado se calculan empleando títulos del Banco Central únicamente. Entonces y por lo tanto, la primera tasa al contado es la Tasa Interna De Retorno de un teórico título sin cupones, las tasas al contado siguiente -sobre la curva de rendimientos- se someten un proceso de iteración/recálculo.
La siguiente es la información después de un día de operaciones en el mercado de renta fija en términos anuales. The following information is given by the fixed rent market after an annualized trading day (Oct. 11, 2012):
Fecha de vencimiento/ Spot Rate/Tasa al contado (annual effective):
Maturity Date:
Feb. 15, 2013 0.1250782%
Aug. 15, 2013 0.3967851%
Feb. 15, 2014 0.4751252%
Aug. 15, 2014 0.5253753%
Feb. 15, 2015 0.5163284%
Aug. 15, 2015 0.4922074%
Feb. 15, 2016 0.3917654%
Aug. 15, 2016 0.537439%
Feb. 15, 2017 0.8889277%
Para títulos emitidos por el BANCO CENTRAL. For "treasuries" issued by the Central Bank.
Cuál es la curva de Tasas Instantáneas? What is the Short Rate curve ?
Time to maturity in years/Plazo al vencimiento en años: 0.3479452, 0.8438356, 1.3479452, 1.8438356, 2.3479452, 2.8438356, 3.3479452, 3.8465753, 4.3506849
Habrá que reescribir las tasas de descuento en semestre efectivo y no año efectivo/ You will have to rewrite the rates in effective semesters and not years
La primera tasa instantánea es igual a la primera tasa al contado/The first short rate is equal to the first spot rate: 0.0625195% per semester or 0.0435026% until maturity. r(0,1)
r(1,2) = (1.001981961^2 / 1.000625195)-1 = 0.334057% per semester or 0.2910886% per time fraction
r(2,3) = 0.305232% per time fraction or 0.315497% per semester
r(3,4) = 0.3277799% per time fraction or 0.337568% per semester
r(4,5) = 0.2433175% per time fraction or 0.239787% per semester
r(5,6) = 0.1873067% per time fraction or 0.185672% per semester
r(6,7) = -0.087239% per time fraction or -0.104445% per semester
r(7,8) = 0.7555578% per time fraction or 0.7785148% per semester
r(8,9) = 1.804683% per time fraction or 1.855504% per semester
The short rate curve tells us the market expectation and the expected value for the 3 month rate in 3, 6, 9, 12 months from now and so on OR the annual effective rate in 1, 2, 3, 4 years and so on...../La curva para tasas instantáneas nos dice la expectativa del mercado de un periodo a otro y el valor de la tasa a 3 meses en 3, 6, 9, 12 meses desde ahora y en adelante O la tasa efectiva anual en 1, 2, 3, 4 años y en adelante ...
Ahora la curva de tasas a futuro. Now the forward rate curve.
f(1,2) = 0.3340567% semester ; f(1,3) = 0.324776% semester ; f(1,4) = 0.329040% semester
f(1,5) = 0.306719% semester ; f(1,6) = 0.282498% semester ; f(1,7) = 0.217904% semester
f(1,8) = 0.2978% semester ; f(1,9) = 0.491202% semester
f(1,9) = (1.004434805^9/1.000625195)^(1/8) -1
These are the expected spot rates in 0.6958904 semesters, there is no forward rate for nine semesters. Estas son las tasas al contado esperadas en 0.6958904 semestres, no hay tasa futura para nueve semestres.
Swap rates or spreads. Tasa swap o márgenes diferenciales:
Given an 8 semester forward rate and an 8 semester spot rate. (0.491201 - 0.2683594)*100 = 22.28416 bps. Dada una tasa a futuro para 8 semestres y una tasa al contado para 8 semestres....
Sources/Fuentes: www.oup.com/us/ppt/derivatives/DMCH13.ppt (David Dubofsky & Thomas Miller)
-Finance By Kay Giesecke from Stanford University
-Financial Engineering & Risk Management By Martin Haugh & Garud Iyengar from Columbia University
Esta bitácora pretende ser una herramienta educativa en la instrucción y el aprendizaje de los tan mentados FUNDAMENTALES EN FINANZAS, ignorados por la academia tradicional y no enseñados a los estudiantes de negocios y empresariales. This blog pretends to be a learning and instructional tool of the aforementioned FUNDAMENTALS, neglected by conventional scholars and seldom taught to students from Business and Engineering Faculties.
Monday, 1 July 2013
Tuesday, 7 May 2013
BUDGETS & OTHER FORECASTS: DCF ANALYSIS TO APPRAISE DIFFERENT PROJECTS (BANG FOR THE BUCK)
Net
Present Value is widely deployed to perform contrast and comparison among projects, proven
the discount rate, the life expectancy and the initial investment value are all
the same.
Could I use discount cash flow (DCF) analysis to appraise projects with different discount rates, amounts and life expectancies??? YES! But with a twist....
Remember? COST-->BENEFIT or the old fashioned ratio: BENEFIT/COST??
Read the following projects:
These are the free cash flows for every venture. Each of them has a unique market discount rate above the Cost of Capital related to our Investment Bank.....What is/was the best project overall??
"The Bang For The Buck" is the answer.....The discount rates are as follow (%): 4, 4.1, 4.2, 4.5, 5, 10, 8, 10
We know the present value for CapEx, Costs and Investment. Now we need the present value for the net cash income.....They must be read as :
A= 3315600.82 , B= 11965766.65, C= 12374420.65, D= 14061.80, E= 193043.37 , F= 85135.64 , G= 2450008.29 H= 2144175.17 and now: the ratios of efficiency:
A= 1.65780041, B= 1.196576665, C= 1.237442065, D= 1.40618, E= 1.7549397273, F= 4.949746349, G= 2.450008290, H= 6.126214771 Why investment F has the same discount rate than investment H? Although, F life is shorter than H, F is a high tech venture while H is a monopolic public transport service
**************************************************************************************************************************************
NOW, HOW TO DRAW A BUDGET: In most countries, forecasting the last financial statements by using Customer's Price Index rate of change is bylaw.....There is a major flaw: this rate is an average of the economy as a whole, so it might no mirror the change rates of your business....The alternative: Ground Zero Budget
The author's favorite method:
1. You should calculate the historical geometric average for the change rate of your incomes (both operational and non operational)
Could I use discount cash flow (DCF) analysis to appraise projects with different discount rates, amounts and life expectancies??? YES! But with a twist....
Remember? COST-->BENEFIT or the old fashioned ratio: BENEFIT/COST??
Read the following projects:
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
|
0
|
-2000000
|
-10000000
|
-10000000
|
-10000
|
-110000
|
-17200
|
-1000000
|
-350000
|
1
|
1000000
|
4000000
|
0
|
300
|
25000
|
10000
|
200000
|
35000
|
2
|
1200000
|
4000000
|
0
|
500
|
25000
|
10000
|
206000
|
35000
|
3
|
1400000
|
5000000
|
14000000
|
1200
|
25000
|
10000
|
212180
|
35000
|
4
|
2000
|
25000
|
10000
|
218545,4
|
42000
|
|||
5
|
2000
|
25000
|
10000
|
225101,76
|
42000
|
|||
6
|
25000
|
10000
|
231854,81
|
42000
|
||||
7
|
25000
|
10000
|
238810,46
|
42000
|
||||
8
|
25000
|
10000
|
245974,77
|
42000
|
||||
9
|
25000
|
10000
|
253354,02
|
42000
|
||||
10
|
25000
|
10000
|
260954,64
|
42000
|
||||
11
|
10000
|
268783,28
|
42000
|
|||||
12
|
10000
|
276846,77
|
42000
|
|||||
13
|
10000
|
285152,18
|
42000
|
|||||
14
|
10000
|
293706,74
|
42000
|
|||||
15
|
10000
|
302517,94
|
42000
|
|||||
16
|
10000
|
311593,48
|
42000
|
|||||
17
|
10000
|
320941,29
|
42000
|
|||||
18
|
10000
|
330569,53
|
42000
|
|||||
19
|
10000
|
340486,61
|
42000
|
|||||
20
|
10000
|
350701,21
|
42000
|
|||||
21
|
42000
|
|||||||
22
|
42000
|
|||||||
23
|
42000
|
|||||||
24
|
42000
|
|||||||
25
|
42000
|
These are the free cash flows for every venture. Each of them has a unique market discount rate above the Cost of Capital related to our Investment Bank.....What is/was the best project overall??
"The Bang For The Buck" is the answer.....The discount rates are as follow (%): 4, 4.1, 4.2, 4.5, 5, 10, 8, 10
We know the present value for CapEx, Costs and Investment. Now we need the present value for the net cash income.....They must be read as :
A= 3315600.82 , B= 11965766.65, C= 12374420.65, D= 14061.80, E= 193043.37 , F= 85135.64 , G= 2450008.29 H= 2144175.17 and now: the ratios of efficiency:
A= 1.65780041, B= 1.196576665, C= 1.237442065, D= 1.40618, E= 1.7549397273, F= 4.949746349, G= 2.450008290, H= 6.126214771 Why investment F has the same discount rate than investment H? Although, F life is shorter than H, F is a high tech venture while H is a monopolic public transport service
**************************************************************************************************************************************
NOW, HOW TO DRAW A BUDGET: In most countries, forecasting the last financial statements by using Customer's Price Index rate of change is bylaw.....There is a major flaw: this rate is an average of the economy as a whole, so it might no mirror the change rates of your business....The alternative: Ground Zero Budget
The author's favorite method:
1. You should calculate the historical geometric average for the change rate of your incomes (both operational and non operational)
2.Apply down analysis to calculate the share
for costs, expenses, profit/loss
....Now you can forecast these variables and to
draw an income statement with an expected profit/loss
3. The expected profit/loss goes to the EQUITY
section on the Balance sheet and again ....based on historical calculations you
must apply down analysis to draw the pending values for the accounts on the
equity section and the accounts on the LIABILITIES SECTION....The share for
each account and subaccount are defined by the arithmetical average of previous
years
For
example: total income for your company last fiscal year was $150
million.....The historical geometric average for the change is 15% a year
Total operational costs, CapEx and non operational Expenditure. Down Analysis tells us that the historical average weight of them is 80%
150*1.15 = 172 .5 expected total income for next year and 172.5 * 0.8 = 138 the total expected costs, CapEx and non operational expenditure (taxes have been discounted, already)
expected net profit = 34.5 Down analysis tells us that the historical average weight for profits is 50% of the equity
expected equity = $69 millions down analysis tells us that the historical average weight of equity on the financial structure for this company is 70%
liabilites are 30% = expected $29.57 millions
total asset : $98.57 millions
See you around!
Sources: Kay Giesecke, Dmitry Smelov, David Luenberger, Jorge E. Burbano, Alberto Ortiz & Stanford U.
Total operational costs, CapEx and non operational Expenditure. Down Analysis tells us that the historical average weight of them is 80%
150*1.15 = 172 .5 expected total income for next year and 172.5 * 0.8 = 138 the total expected costs, CapEx and non operational expenditure (taxes have been discounted, already)
expected net profit = 34.5 Down analysis tells us that the historical average weight for profits is 50% of the equity
expected equity = $69 millions down analysis tells us that the historical average weight of equity on the financial structure for this company is 70%
liabilites are 30% = expected $29.57 millions
total asset : $98.57 millions
See you around!
Sources: Kay Giesecke, Dmitry Smelov, David Luenberger, Jorge E. Burbano, Alberto Ortiz & Stanford U.
Sunday, 5 May 2013
A MULTIPLE CORRELATION INDEX: CORRUPTION AND EXTENSION OF THE ORIGINAL PEARSON PRODUCT (PART 2)
As a follow-up. Here we have got 3 time series
featuring 3 different kind of shares. The first share belongs to a fabric
corporation, the second share belongs to a petroleum corporation and the third
share belongs to a grocery corporation. The skewed Pearson Correlation indexes
for each couple are: 0.6651, 0.6727 and 0.6427. Now the raw average
price for each trading day:
FABRICS
|
OIL & GAS
|
GROCERIES
|
65,10
|
3.869,42
|
24.077,00
|
68,27
|
3.860,90
|
23.843,18
|
71,08
|
3.791,27
|
23.674,54
|
70,86
|
3.746,08
|
23.665,48
|
69,61
|
3.698,01
|
23.084,56
|
70,91
|
3.617,88
|
22.495,30
|
71,63
|
3.579,54
|
22.094,81
|
71,07
|
3.621,66
|
21.910,14
|
68,17
|
3.595,94
|
21.711,46
|
68,35
|
3.575,26
|
21.307,96
|
69,02
|
3.597,24
|
21.226,38
|
70,87
|
3.690,66
|
21.880,14
|
72,31
|
3.706,20
|
22.729,31
|
71,49
|
3.699,86
|
22.932,26
|
70,44
|
3.790,14
|
22.910,22
|
71,32
|
3.743,88
|
23.499,11
|
72,44
|
3.740,50
|
23.422,12
|
73,95
|
3.749,48
|
23.600,99
|
73,46
|
3.742,19
|
23.406,75
|
73,37
|
3.738,92
|
23.806,03
|
71,75
|
3.733,71
|
24.173,57
|
71,22
|
3.710,75
|
24.086,27
|
70,72
|
3.694,24
|
23.794,90
|
70,97
|
3.654,79
|
23.952,48
|
68,35
|
3.600,30
|
23.804,88
|
71,02
|
3.643,38
|
23.920,07
|
69,56
|
3.669,10
|
23.981,40
|
71,69
|
3.678,68
|
24.109,30
|
73,16
|
3.702,06
|
23.275,96
|
75,38
|
3.706,62
|
23.455,27
|
75,64
|
3.706,42
|
23.844,62
|
72,86
|
3610,87
|
23581,93
|
73,59
|
3605,19
|
23347,24
|
73,2
|
3623,37
|
23691,06
|
74,9
|
3651,15
|
23945,73
|
74,81
|
3660,14
|
24018,57
|
74,02
|
3619,38
|
23866,32
|
74,42
|
3641,45
|
23687,05
|
75,26
|
3759,57
|
24152,72
|
73,89
|
3856,61
|
24147,52
|
74,06
|
3870,49
|
22968,05
|
72,59
|
3892,56
|
23028,89
|
71,37
|
3873,3
|
23080,17
|
71,43
|
3803,2
|
22524,51
|
71,86
|
3834,58
|
23072,63
|
72,88
|
3884,78
|
23563,11
|
74,02
|
3867,9
|
23573,5
|
72,97
|
3842,18
|
23059,16
|
72,42
|
3818,36
|
23000,79
|
73,41
|
3866,75
|
22993,5
|
73,6
|
3894,27
|
22867,91
|
73,41
|
3976
|
23010,92
|
73,82
|
4069,19
|
23521,07
|
72,9
|
4090,19
|
23850,26
|
73,26
|
4144,15
|
24071,89
|
72,75
|
4081,99
|
23994,51
|
71,69
|
3878,94
|
23556,18
|
73,28
|
3848,36
|
23504,43
|
73,27
|
3836,8
|
23132,36
|
74,45
|
3919,65
|
23013,05
|
73,42
|
3888,22
|
23005,2
|
72,2
|
3926,04
|
22917,16
|
71,37
|
3887,87
|
22790,82
|
71,64
|
3834,56
|
22889,26
|
71,49
|
3774,58
|
22940,21
|
71,79
|
3927,68
|
22868,54
|
73,05
|
3930
|
22894,61
|
73,47
|
3902,05
|
23020,61
|
73,45
|
3915,34
|
23126,91
|
72,46
|
3901,71
|
23002,63
|
71,94
|
3911,94
|
23014,98
|
71,91
|
3900,49
|
22954,69
|
70,88
|
3942,77
|
22907,7
|
70,06
|
3932,33
|
22786
|
70,34
|
3947,59
|
22737,64
|
69,22
|
3951,29
|
22939,9
|
71,04
|
3994,35
|
23320,87
|
71,25
|
4014,27
|
24242,4
|
70,51
|
4027,99
|
24132,24
|
71,06
|
3999,16
|
23899,82
|
71,5
|
4060,33
|
23954,47
|
70,97
|
4044,01
|
23729,92
|
70,43
|
4016,05
|
23837,89
|
70,31
|
3974,01
|
23793,8
|
70,09
|
4010,84
|
23962,9
|
71,16
|
4037,01
|
24234,67
|
72,13
|
4023,77
|
24221,85
|
72,95
|
4066,31
|
24413
|
72,3
|
4046,55
|
24169,03
|
72,61
|
4021,81
|
24219,63
|
73,88
|
4024,89
|
24229,18
|
75,24
|
4012,94
|
24247,06
|
75,29
|
4004,14
|
24537,92
|
76,19
|
3986,96
|
24893,58
|
75,41
|
3981,21
|
24682,99
|
74,02
|
3932,97
|
24455,89
|
74,56
|
3934,09
|
24438,97
|
74,22
|
3874,82
|
23722,63
|
74,85
|
3862,77
|
23756,54
|
74,53
|
3893,18
|
23765,09
|
75,59
|
3994,93
|
23944,58
|
76,67
|
4039,33
|
23810,71
|
77,06
|
4080,31
|
23797,53
|
77,48
|
4110,17
|
23891,81
|
77,62
|
4171,82
|
24361,05
|
78,58
|
4184,78
|
24687,21
|
78,94
|
4103,64
|
24094,74
|
79,11
|
4123,51
|
24384,35
|
79,41
|
4154,09
|
24422,02
|
78,26
|
4142,23
|
24427,63
|
79,06
|
4177,08
|
24639,66
|
78,55
|
4125,09
|
24376,14
|
79,34
|
4144,72
|
24284,61
|
80,05
|
4152,71
|
24275,73
|
80,93
|
4160,73
|
24352,85
|
82,21
|
4190,32
|
24447,54
|
82,99
|
4237,14
|
24788,28
|
83,92
|
4285,22
|
25196,38
|
84,17
|
4286,16
|
25833,83
|
83,5
|
4224,51
|
25615,49
|
82,94
|
4255,18
|
25325,63
|
83,34
|
4280,31
|
25497,93
|
83,75
|
4249,61
|
25478,48
|
As we explained previously, Both covariance and
correlation are measures of SECOND DEGREE. Every isolated line with a product
MUST BE turned into its SECOND DEGREE twin. How? Read the following example:
If we know the averages of each set we have to
proceed to calculate the differentials as seen on the regular covariance
formula. The first line of our "threesome" turns out to be: -8.6254,
-34.3924, 409.5620
In order to apply a transformation/conversion
we need to use the absolute values. The product of our "threesome" is
equal to 121496.645. This is a third-degree value and we need a second-degree
one.
121496.645^(2/3) = -2453.0676 Why the negative condition if 2 of the arguments are negative?
121496.645^(2/3) = -2453.0676 Why the negative condition if 2 of the arguments are negative?
RULE OF THUMB: The algebraic law of products is
not respected here. We have to apply Boolean Logics. If all of the
differentials display the same symbol, the final value is positive. If at least
one of the differentials displays a symbol not equal to the remaining
arguments, so therefore, the final value is negative.
The skewed covariance is: 3630.2961
The skewed covariance is: 3630.2961
The standard deviations of each series are:
3.7080, 185.9578 and 814.4545
Again,
the product after the 3 standard deviations has to be rewritten in
second-degree
The skewed and consolidated correlation is:
The skewed and consolidated correlation is:
0,5333257994
|
Why the final value is lesser than the regular
coupled-pearson index? We have enhanced the probability space and the number of
coincidences are fewer than those watched while our sets are studied as
couples.
Sources: RiskCenter, Investopedia, Wikipedia,
EdX.org, Coursera.org
Subscribe to:
Posts (Atom)