FABRICS
|
OIL & GAS
|
GROCERIES
|
65,10
|
3.869,42
|
24.077,00
|
68,27
|
3.860,90
|
23.843,18
|
71,08
|
3.791,27
|
23.674,54
|
70,86
|
3.746,08
|
23.665,48
|
69,61
|
3.698,01
|
23.084,56
|
70,91
|
3.617,88
|
22.495,30
|
71,63
|
3.579,54
|
22.094,81
|
71,07
|
3.621,66
|
21.910,14
|
68,17
|
3.595,94
|
21.711,46
|
68,35
|
3.575,26
|
21.307,96
|
69,02
|
3.597,24
|
21.226,38
|
70,87
|
3.690,66
|
21.880,14
|
72,31
|
3.706,20
|
22.729,31
|
71,49
|
3.699,86
|
22.932,26
|
70,44
|
3.790,14
|
22.910,22
|
71,32
|
3.743,88
|
23.499,11
|
72,44
|
3.740,50
|
23.422,12
|
73,95
|
3.749,48
|
23.600,99
|
73,46
|
3.742,19
|
23.406,75
|
73,37
|
3.738,92
|
23.806,03
|
71,75
|
3.733,71
|
24.173,57
|
71,22
|
3.710,75
|
24.086,27
|
70,72
|
3.694,24
|
23.794,90
|
70,97
|
3.654,79
|
23.952,48
|
68,35
|
3.600,30
|
23.804,88
|
71,02
|
3.643,38
|
23.920,07
|
69,56
|
3.669,10
|
23.981,40
|
71,69
|
3.678,68
|
24.109,30
|
73,16
|
3.702,06
|
23.275,96
|
75,38
|
3.706,62
|
23.455,27
|
75,64
|
3.706,42
|
23.844,62
|
72,86
|
3610,87
|
23581,93
|
73,59
|
3605,19
|
23347,24
|
73,2
|
3623,37
|
23691,06
|
74,9
|
3651,15
|
23945,73
|
74,81
|
3660,14
|
24018,57
|
74,02
|
3619,38
|
23866,32
|
74,42
|
3641,45
|
23687,05
|
75,26
|
3759,57
|
24152,72
|
73,89
|
3856,61
|
24147,52
|
74,06
|
3870,49
|
22968,05
|
72,59
|
3892,56
|
23028,89
|
71,37
|
3873,3
|
23080,17
|
71,43
|
3803,2
|
22524,51
|
71,86
|
3834,58
|
23072,63
|
72,88
|
3884,78
|
23563,11
|
74,02
|
3867,9
|
23573,5
|
72,97
|
3842,18
|
23059,16
|
72,42
|
3818,36
|
23000,79
|
73,41
|
3866,75
|
22993,5
|
73,6
|
3894,27
|
22867,91
|
73,41
|
3976
|
23010,92
|
73,82
|
4069,19
|
23521,07
|
72,9
|
4090,19
|
23850,26
|
73,26
|
4144,15
|
24071,89
|
72,75
|
4081,99
|
23994,51
|
71,69
|
3878,94
|
23556,18
|
73,28
|
3848,36
|
23504,43
|
73,27
|
3836,8
|
23132,36
|
74,45
|
3919,65
|
23013,05
|
73,42
|
3888,22
|
23005,2
|
72,2
|
3926,04
|
22917,16
|
71,37
|
3887,87
|
22790,82
|
71,64
|
3834,56
|
22889,26
|
71,49
|
3774,58
|
22940,21
|
71,79
|
3927,68
|
22868,54
|
73,05
|
3930
|
22894,61
|
73,47
|
3902,05
|
23020,61
|
73,45
|
3915,34
|
23126,91
|
72,46
|
3901,71
|
23002,63
|
71,94
|
3911,94
|
23014,98
|
71,91
|
3900,49
|
22954,69
|
70,88
|
3942,77
|
22907,7
|
70,06
|
3932,33
|
22786
|
70,34
|
3947,59
|
22737,64
|
69,22
|
3951,29
|
22939,9
|
71,04
|
3994,35
|
23320,87
|
71,25
|
4014,27
|
24242,4
|
70,51
|
4027,99
|
24132,24
|
71,06
|
3999,16
|
23899,82
|
71,5
|
4060,33
|
23954,47
|
70,97
|
4044,01
|
23729,92
|
70,43
|
4016,05
|
23837,89
|
70,31
|
3974,01
|
23793,8
|
70,09
|
4010,84
|
23962,9
|
71,16
|
4037,01
|
24234,67
|
72,13
|
4023,77
|
24221,85
|
72,95
|
4066,31
|
24413
|
72,3
|
4046,55
|
24169,03
|
72,61
|
4021,81
|
24219,63
|
73,88
|
4024,89
|
24229,18
|
75,24
|
4012,94
|
24247,06
|
75,29
|
4004,14
|
24537,92
|
76,19
|
3986,96
|
24893,58
|
75,41
|
3981,21
|
24682,99
|
74,02
|
3932,97
|
24455,89
|
74,56
|
3934,09
|
24438,97
|
74,22
|
3874,82
|
23722,63
|
74,85
|
3862,77
|
23756,54
|
74,53
|
3893,18
|
23765,09
|
75,59
|
3994,93
|
23944,58
|
76,67
|
4039,33
|
23810,71
|
77,06
|
4080,31
|
23797,53
|
77,48
|
4110,17
|
23891,81
|
77,62
|
4171,82
|
24361,05
|
78,58
|
4184,78
|
24687,21
|
78,94
|
4103,64
|
24094,74
|
79,11
|
4123,51
|
24384,35
|
79,41
|
4154,09
|
24422,02
|
78,26
|
4142,23
|
24427,63
|
79,06
|
4177,08
|
24639,66
|
78,55
|
4125,09
|
24376,14
|
79,34
|
4144,72
|
24284,61
|
80,05
|
4152,71
|
24275,73
|
80,93
|
4160,73
|
24352,85
|
82,21
|
4190,32
|
24447,54
|
82,99
|
4237,14
|
24788,28
|
83,92
|
4285,22
|
25196,38
|
84,17
|
4286,16
|
25833,83
|
83,5
|
4224,51
|
25615,49
|
82,94
|
4255,18
|
25325,63
|
83,34
|
4280,31
|
25497,93
|
83,75
|
4249,61
|
25478,48
|
As we explained previously, Both covariance and
correlation are measures of SECOND DEGREE. Every isolated line with a product
MUST BE turned into its SECOND DEGREE twin. How? Read the following example:
If we know the averages of each set we have to
proceed to calculate the differentials as seen on the regular covariance
formula. The first line of our "threesome" turns out to be: -8.6254,
-34.3924, 409.5620
In order to apply a transformation/conversion
we need to use the absolute values. The product of our "threesome" is
equal to 121496.645. This is a third-degree value and we need a second-degree
one.
121496.645^(2/3) = -2453.0676 Why the negative condition if 2 of the arguments are negative?
121496.645^(2/3) = -2453.0676 Why the negative condition if 2 of the arguments are negative?
RULE OF THUMB: The algebraic law of products is
not respected here. We have to apply Boolean Logics. If all of the
differentials display the same symbol, the final value is positive. If at least
one of the differentials displays a symbol not equal to the remaining
arguments, so therefore, the final value is negative.
The skewed covariance is: 3630.2961
The skewed covariance is: 3630.2961
The standard deviations of each series are:
3.7080, 185.9578 and 814.4545
Again,
the product after the 3 standard deviations has to be rewritten in
second-degree
The skewed and consolidated correlation is:
The skewed and consolidated correlation is:
0,5333257994
|
Why the final value is lesser than the regular
coupled-pearson index? We have enhanced the probability space and the number of
coincidences are fewer than those watched while our sets are studied as
couples.
Sources: RiskCenter, Investopedia, Wikipedia,
EdX.org, Coursera.org
No comments:
Post a Comment